World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On the Riemann Problem Simulation for the Drift-Flux Equations of Two-Phase Flows

    https://doi.org/10.1142/S0219876216500092Cited by:31 (Source: Crossref)

    This work presents computational simulations and analytical techniques for solving the drift-flux two-phase flow model. The model equations are formulated to describe the exact solution of the Riemann problem. The solution is constructed by solving the conservation of mass for each phase and the mixture conservation momentum equation of the two phases under isothermal conditions. Particular attention is given to address the expressions for jump relationships and the Riemann invariants. The performance of the developed Riemann solver is assessed with respect to different test cases selected from the literature. Comparisons with Godunov methods of centred-type are provided to demonstrate the use of the proposed exact and computational framework. Excellent agreement is observed between analytical results and numerical predictions.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!