World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Efficient Method for Topology Optimization of Continuum Structures in the Presence of Uncertainty in Loading Direction

    https://doi.org/10.1142/S0219876217500542Cited by:21 (Source: Crossref)

    This paper presents a simple yet efficient method for the topology optimization of continuum structures considering interval uncertainties in loading directions. Interval mathematics is employed to equivalently transform the uncertain topology optimization problem into a deterministic one with multiple load cases. An efficient soft-kill bi-directional evolutionary structural optimization (BESO) method is proposed to solve the problem, which only requires two finite element analyses per iteration for each external load with directional uncertainty regardless of the number of the multiple load cases. The presented algorithm leads to significant computational savings when compared with Monte Carlo-based optimization (MCBO) algorithms. A series of numerical examples including symmetric and nonsymmetric loading variations demonstrate the considerable improvement of computational efficiency of the proposed approach as well as the significance of including uncertainties in topology optimization when to design a structure. Optimums obtained from the proposed algorithm are verified by MCBO method.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!