World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Boundary Element Method Based on the Hierarchical Matrices and Multipole Expansion Theory for Acoustic Problems

    https://doi.org/10.1142/S0219876218500093Cited by:5 (Source: Crossref)

    The coefficient matrices of conventional boundary element method (CBEM) are dense and fully populated. Special techniques such as hierarchical matrices (H-matrices) format are required to extent its ability of handling large-scale problems. Adaptive cross approximation (ACA) algorithm is a widely adopted algorithm to obtain the H-matrices. However, the accuracy of the ACA boundary element method (ACABEM) cannot be adjusted by changing the tolerance 𝜀 when it exceeds a certain value. In this paper, the degenerate kernel approximation idea for the low-rank matrices is developed to build a fast BEM for acoustic problems by exploring the multipole expansion of the kernel, which is referred as the multipole expansion H-matrices boundary element method (ME-H-BEM). The newly developed algorithm compresses the far-field submatrices into low rank submatrices with the expansion terms of Green’s function. The obtained H-matrices are applied in conjunction with the generalized minimal residual method (GMRES) to solve acoustic problems. Numerical examples are carefully set up to compare the accuracy, efficiency as well as memory consumption of the CBEM, ACABEM, fast multipole boundary element method (FMBEM) and ME-H-BEM. The results of a pulsating sphere indicate that the ME-H-BEM keeps both storage and operation logarithmic-linear complexity of the H-matrices format as the ACABEM does. Moreover, the ME-H-BEM can achieve better convergence and higher accuracy than the ACABEM. For the analyzed complicated large-scale model, the ME-H-BEM with appropriate number of expansion terms has an advantage in terms of efficiency as compared with the ACABEM. Compared with the FMBEM, the ME-H-BEM is easier to be implemented.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!