Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Smoothed Finite Element Methods for Predicting the Mid to High Frequency Acoustic Response in the Cylinder-Head Chamber of a Diesel Engine

    https://doi.org/10.1142/S0219876219500609Cited by:1 (Source: Crossref)

    Modeling and simulation of the acoustic response in enclosed cavities of a diesel engine are of great significance for optimal design of an engine to achieve a better acoustic performance. Nevertheless, the use of the traditional finite element method (FEM) for the mid to high frequency acoustic prediction is limited by the well-known numerical dispersion errors and the tedious preprocessing of the model. Smoothed finite element methods (SFEMs) proposed originally for solid mechanics have been employed for the modeling of acoustic problems in the low to medium frequency ranges whilst acoustic modeling in the mid to high frequency range remains untouched. This paper comprehensively investigates into the performance of SFEMs in modeling and simulation of mid to high frequency acoustic problems. It is shown that the mass-redistributed edge-based smoothed finite element method (MR-ES-FEM) can yield an excellent prediction result in the mid to high frequency range in terms of accuracy, efficiency and robustness. The MR-ES-FEM is also used to simulate sound propagation in a cylinder head chamber of a four-cylinder diesel engine to prove its effectiveness. The findings presented in this paper offer an in-depth insight for engineers to select suitable numerical methods for solving mid to high frequency acoustic problems in the design of diesel engines.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!