Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Reverse Modeling and Topological Optimization for Lightweight Design of Automobile Wheel Hubs with Hollow Ribs

    https://doi.org/10.1142/S0219876219500646Cited by:8 (Source: Crossref)

    Lightweight of wheel hubs is the linchpin for reducing the unsprung mass and improving the vehicle dynamic and braking performance of vehicles, thus, sustaining stability and comfortability. Current experience-based lightweight designs of wheel hubs have been argued to render uneven distribution of materials. This work develops a novel method to combine the reverse modeling technique with the topological optimization method to derive lightweight wheel hubs based on the principles of mechanics. A reverse modeling technique is first adopted to scan and reproduce the prototype 3D geometry of the wheel hub with solid ribs. The finite element method (FEM) is then applied to perform stress analysis to identify the maximum stress and its location of wheel hub under variable potential physical conditions. The finite element model is then divided into optimization region and nonoptimized region: the former is the interior portion of spoke and the latter is the outer surface of the spoke. A topology optimization is then conducted to remove the optimization region which is interior material of the spokes. The hollow wheel hub is then reconstructed with constant wall thickness about 5mm via a reverse modeling technique. The results show that the reconstructed model can reduce the mass of 12.7% compared to the pre-optimized model. The present method of this paper can guarantee the optimal distribution of wheel hub material based on mechanics principle. It can be implemented automatically to shorten the time interval for optimal lightweight designs. It is especially preferable for many existing structures and components as it maintains the structural appearance of optimization object.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!