World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Numerical Method to Solve Nonsymmetric Eigensystems Applied to Dynamics of Turbomachinery

    https://doi.org/10.1142/S0219876219500737Cited by:1 (Source: Crossref)

    In this paper, a canonical transformation is proposed to solve the eigenvalue problem related to the dynamics of rotor-bearing systems. In this problem, all matrices are real, but they may not be symmetric, which leads to the appearance of complex eigenvalues and eigenvectors. The bi-iteration method is selected to solve the original eigenproblem whereas the QR algorithm is adopted to solve the reduced or projected problem. A new canonical transformation of the global eigenproblem which reduces the quadratic eigenproblem to a linear eigenproblem, maintaining numerical stability since all that is required is that the stiffness matrix is well-conditioned, which is always true when it comes to applications in dynamic problems. The proposed technique is good for obtaining dominant eigenvalues and corresponding eigenvectors of real nonsymmetric matrices and it possesses the following properties: (i) the matrix is not transformed, therefore sparsity is maintained, (ii) partial eigensolutions can be obtained and (iii) use may be made of good eigenvectors predictions.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!