World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Reliability-Based Robust Design Optimization in Consideration of Manufacturing Tolerance by Multi-Objective Evolutionary Optimization with Repair Algorithm

    https://doi.org/10.1142/S0219876221500055Cited by:4 (Source: Crossref)

    There are inherently various uncertainties in practical engineering, and reliability-based design optimization (RBDO) and robust design optimization (RDO) are two well-established methodologies when considering the uncertainties. Naturally, reliability-based robust design optimization (RBRDO) is a methodology developed recently by combining RBDO and RDO, in which the tolerances of random design variables are always assumed as constants. However, the tolerance of random design variables is a key factor for the objective robustness and manufacturing cost, and the tolerance allocation is the core problem in mechanical manufacturing. Inspired by the cost–tolerance relationship in mechanical manufacturing, this paper presents an integrated framework to simultaneously find the optimal design variable and the corresponding tolerance in the multi-objective RBRDO, with the trade-off between objective robustness and manufacturing cost. The failure mechanism of the constraint handling strategy of the constrained reference vector-guided evolutionary algorithm (C-RVEA) is discussed to solve the multi-objective optimization formulation. Then the robust repair operator and reliability-based repair operator are proposed to transform unfeasible solutions to the feasible ones under reliability constraints. Numerical results reveal that the proposed repair algorithm is effective. By solving the integrated multi-objective optimization problem, the Pareto front with the compromised solutions between the objective robustness and manufacturing cost could be obtained, from which decision makers can select the satisfying solution conveniently according to the preferred requirements.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!