World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Well-Balanced Unstaggered Central Scheme Based on the Continuous Approximation of the Bottom Topography

    https://doi.org/10.1142/S021987622250058XCited by:2 (Source: Crossref)

    A key difficulty of the conventional unstaggered central schemes for the shallow water equations (SWEs) is the well-balanced property that may be missed when the computational domain contains wet-dry fronts. To avoid the numerical difficulty caused by the nonconservative product, we construct a linear piecewise continuous bottom topography. We propose a new discretization of the source term on the staggered cells, and a novel “backward” step based on the water surface elevation. The core of this paper is that, we construct a map between the water surface elevation and the cell average of the free surface on the staggered cells to discretize the source term for maintaining the stationary solutions. The positivity-preserving property is obtained by using the “draining” time-step technique. A number of classical problems of the SWEs can be solved reasonably.

    AMSC: 76M12, 35L65
    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!