World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SUBSPACE LEARNING BASED ON LAPLACIAN EIGENMAPS AND LDA FOR FACE RECOGNITION

    https://doi.org/10.1142/S0219878906000812Cited by:0 (Source: Crossref)

    Subspace-based face recognition method aims to find a low-dimensional subspace of face appearance embedded in a high-dimensional image space. The differences between different methods lie in their different motivations and objective functions. The objective function of the proposed method is formed by combining the ideas of linear Laplacian eigenmaps and linear discriminant analysis. The actual computation of the subspace reduces to a maximum eigenvalue problem. Major advantage of the proposed method over traditional methods is that it utilizes both local manifold structure information and discriminant information of the training data. Experimental results on the AR face databases demonstrate the effectiveness of the proposed method.