World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A MUTATION PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTILAYER PERCEPTRON TRAINING WITH APPLICATIONS

    https://doi.org/10.1142/S0219878913500034Cited by:0 (Source: Crossref)

    Particle swarm optimization (PSO), a prevalent optimization algorithm, has been successfully applied to various fields of science and engineering. However, PSO still suffers from some problems such as premature convergence. To solve these problems, we propose a mutation PSO (MPSO) in this paper. Compared with the traditional PSO, there are two main improvements of the proposed MPSO. First, a new particle update rule is explored. The new rule updates a particle's position according to not only its best known position and the global best known position of the swarm, but also a number of other particles' best known positions. The second improvement is that a mutation operator is employed. Mutation operator is used to avoid premature convergence. The MPSO is utilized to train a multilayer perceptron (MLP). The MLP trained by MPSO is finally applied to two classification problems: Iris flower classification and scene classification. For comparison purposes, traditional PSO, genetic algorithm (GA), and back-propagation (BP) are also investigated. Experimental results demonstrate the superior performance of the proposed MPSO for MLP training.