World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SUPPORTING DISTRESS SIGNALS OVER LOW EARTH ORBIT MOBILE SATELLITE SYSTEMS FOR EMERGENCY INFORMATION ACQUISITION

    https://doi.org/10.1142/S0219878913500186Cited by:0 (Source: Crossref)

    Low earth orbit (LEO) satellite systems allow a broad range of services to be provided using small, lightweight, cellular-like portable telephones. Exploiting LEO satellites to support distress signals for aircrafts, ships and international travelers is explored in the current paper. A multi-service priority-oriented algorithm is proposed for handling voice, data and emergency signals over LEO satellites. The emergency signal is privileged with service priority so that rescue operation can be carried out as soon as possible. The priority mechanism includes channel reservation as well as joining a queue if no free channel is available as long as the request is roaming in the handover area. In addition, a simplified but efficient approach is suggested for locating the object of an imminent danger situation. As LEO satellites are non-geostationary, the visible period of each spot-beam is small. Consequently, a teletraffic model, that accommodates the mobility of spot-beams as well as the resulting handover rate, is developed in order to gauge the performance of the proposed algorithm. Numerical results for access denying and service-dropping rates are presented for nominal system parameters.