World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Affine coxeter group Wa(A4), quaternions, and decagonal quasicrystals

    https://doi.org/10.1142/S0219887814500315Cited by:8 (Source: Crossref)

    We introduce a technique of projection onto the Coxeter plane of an arbitrary higher-dimensional lattice described by the affine Coxeter group. The Coxeter plane is determined by the simple roots of the Coxeter graph I2(h) where h is the Coxeter number of the Coxeter group W(G) which embeds the dihedral group Dh of order 2h as a maximal subgroup. As a simple application, we demonstrate projections of the root and weight lattices of A4 onto the Coxeter plane using the strip (canonical) projection method. We show that the crystal spaces of the affine Wa(A4) can be decomposed into two orthogonal spaces whose point group is the dihedral group D5 which acts in both spaces faithfully. The strip projections of the root and weight lattices can be taken as models for the decagonal quasicrystals. The paper also revises the quaternionic descriptions of the root and weight lattices, described by the affine Coxeter group Wa(A3), which correspond to the face centered cubic (fcc) lattice and body centered cubic (bcc) lattice respectively. Extensions of these lattices to higher dimensions lead to the root and weight lattices of the group Wa(An), n ≥ 4. We also note that the projection of the Voronoi cell of the root lattice of Wa(A4) describes a framework of nested decagram growing with the power of the golden ratio recently discovered in the Islamic arts.

    AMSC: 06B99, 11F99, 11H56, 14L17, 14L20, 17C60