Twistorial construction of minimal hypersurfaces
Abstract
Every almost Hermitian structure (g, J) on a four-manifold M determines a hypersurface ΣJ in the (positive) twistor space of (M, g) consisting of the complex structures anti-commuting with J. In this paper, we find the conditions under which ΣJ is minimal with respect to a natural Riemannian metric on the twistor space in the cases when J is integrable or symplectic. Several examples illustrating the obtained results are also discussed.