Quaternionic (super) twistors extensions and general superspaces
Abstract
In a attempt to treat a supergravity as a tensor representation, the four-dimensional N-extended quaternionic superspaces are constructed from the (diffeomorphyc) graded extension of the ordinary Penrose-twistor formulation, performed in a previous work of the authors [D. J. Cirilo-Lombardo and V. N. Pervushin, Int. J. Geom. Methods Mod. Phys., doi: http://dx.doi.org/10.1142/S0219887816501139.], with N=p+k. These quaternionic superspaces have 4+k(N−k) even-quaternionic coordinates and 4N odd-quaternionic coordinates, where each coordinate is a quaternion composed by four ℂ-fields (bosons and fermions respectively). The fields content as the dimensionality (even and odd sectors) of these superspaces are given and exemplified by selected physical cases. In this case, the number of fields of the supergravity is determined by the number of components of the tensor representation of the four-dimensional N-extended quaternionic superspaces. The role of tensorial central charges for any NevenUSp(N)=Sp(N,ℍℂ)∩U(N,ℍℂ) is elucidated from this theoretical context.