World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The order on the light cone and its induced topology

    https://doi.org/10.1142/S021988781850069XCited by:5 (Source: Crossref)

    In this paper, we first correct a recent misconception about a topology that was suggested by Zeeman as a possible alternative to his fine topology. This misconception appeared while trying to establish the causality in the ambient boundary-ambient space cosmological model. We then show that this topology is actually the intersection topology (in the sense of Reed [The intersection topology w.r.t. the real line and the countable ordinals, Trans. Am. Math. Soc.297(2) (1986) 509–520]) between the Euclidean topology on 4 and the order topology whose order, namely horismos, is defined on the light cone and we show that the order topology from horismos belongs to the class of Zeeman topologies. These results accelerate the need for a deeper and more systematic study of the global topological properties of spacetime manifolds.

    AMSC: 83–XX, 83F05, 85A40, 54–XX