World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0219887818500986Cited by:0 (Source: Crossref)

This short note is an attempt to bring out the geometric structures in the linking theory of shape dynamics. Symplectic induction is applied to give a natural construction of the extended phase space used in the linking theory as a trivial vector bundle over the original phase space for canonical gravity. The geometry of the gauge fixing for shape dynamics is analyzed with the assistance of the Lichnerowicz–York equation lifted to the extended phase space. An alternative description is provided to show how the same geometry simply derives from symplectic induction.

AMSC: 53D83