Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A general framework for quantum splines

    https://doi.org/10.1142/S0219887818501475Cited by:3 (Source: Crossref)

    Quantum splines are curves in a Hilbert space or, equivalently, in the corresponding Hilbert projective space, which generalize the notion of Riemannian cubic splines to the quantum domain. In this paper, we present a generalization of this concept to general density matrices with a Hamiltonian approach and using a geometrical formulation of quantum mechanics. Our main goal is to formulate an optimal control problem for a nonlinear system on 𝔲(n) which corresponds to the variational problem of quantum splines. The corresponding Hamiltonian equations and interpolation conditions are derived. The results are illustrated with some examples and the corresponding quantum splines are computed with the implementation of a suitable iterative algorithm.

    AMSC: 81Q93, 65D07, 81Q70