World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A geometric relativistic dynamics under any conservative force

    https://doi.org/10.1142/S0219887819500154Cited by:3 (Source: Crossref)

    Riemann’s principle “force equals geometry” provided the basis for Einstein’s General Relativity — the geometric theory of gravitation. In this paper, we follow this principle to derive the dynamics for any static, conservative force. The geometry of spacetime of a moving object is described by a metric obtained from the potential of the force field acting on it. We introduce a generalization of Newton’s First Law — the Generalized Principle of Inertia stating that: An inanimate object moves inertially, that is, with constant velocity, in its own spacetime whose geometry is determined by the forces affecting it. Classical Newtonian dynamics is treated within this framework, using a properly defined Newtonian metric with respect to an inertial lab frame. We reveal a physical deficiency of this metric (responsible for the inability of Newtonian dynamics to account for relativistic behavior), and remove it. The dynamics defined by the corrected Newtonian metric leads to a new Relativistic Newtonian Dynamics for both massive objects and massless particles moving in any static, conservative force field, not necessarily gravitational. This dynamics reduces in the weak field, low velocity limit to classical Newtonian dynamics and also exactly reproduces the classical tests of General Relativity, as well as the post-Keplerian precession of binaries.