World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Spherically symmetric self-gravitating radiating star under expansion-free motion

    https://doi.org/10.1142/S0219887820501893Cited by:0 (Source: Crossref)

    This study deals with the spherically symmetric radiating star (with dissipative perfect fluids) with a central vacuum cavity, evolving under the assumption of expansion-free motion. The analytical model of the such dynamics star is discussed in three regimes — diffusion approximation, geodesic motion and self-similarity — and the solutions of dynamical equations are obtained in its complete generality. The structure scalars, which are related to the fundamental properties of fluid distribution, are also discussed which played a very important role in the dynamics of cavity models. It has been shown that energy density is homogeneous but violates the energy condition under quasi-static diffusion approximation.

    AMSC: 83C05, 83F05, 83C75