Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Quantization of non-Abelian gauge theory in graphene

    https://doi.org/10.1142/S0219887821500481Cited by:1 (Source: Crossref)

    A time-dependent strain induces non-Abelian gauge field in a sheet of graphene. We discuss the effective field theory of this system of graphene subjected to a general form of time-dependent strain. We study the modifications to this effective field theory as a result of breaking Lorentz symmetry down to its sub-group, SIM(1), employing the VSR formalism. As the effective theory describing the graphene system has gauge symmetry; to quantize this theory, we add a suitable ghost and gauge fixing terms to the original action. The resultant action is observed to be invariant under a BRST symmetry. We have studied the BRST symmetry of the resultant theory, and explicitly constructed the BRST transformations.

    AMSC: 81T13, 81T20