World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Magnetic black holes in 4D Einstein–Gauss–Bonnet massive gravity coupled to nonlinear electrodynamics

    https://doi.org/10.1142/S0219887824503304Cited by:1 (Source: Crossref)

    We investigated Einstein–Gauss–Bonnet (EGB) 4D massive gravity coupled to nonlinear electrodynamics (NED) in an anti-de Sitter (AdS) background and found an exact magnetically charged black hole solution. The metric function was analyzed for different values of massive gravity parameters. The first law of black hole thermodynamics and generalized Smarr formula were verified, where we treated the cosmological constant as thermodynamic pressure. We defined vacuum polarization as the conjugate to NED parameter. To analyze the local stability of the black hole, we computed specific heat. We investigated the van der Waals-like/re-entrant phase transition of the black holes and estimated the critical points. We observed small black hole (SBH)/large black hole (LBH) and SBH/intermediate black hole (IBH)/LBH phase transitions. The Joule–Thomson coefficient, inversion, and isenthalpic curves were discussed. Finally, the minimum inversion temperature and the corresponding event horizon radius were obtained using numerical techniques.