World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER–MAXWELL SYSTEM: THE RELAXATION CASE

    https://doi.org/10.1142/S0219891611002421Cited by:92 (Source: Crossref)

    The Euler–Maxwell system regarded as a hydrodynamic model for plasma physics describes the dynamics of 'compressible electrons' in a constant, charged, non-moving ion background. A global smooth flow with small amplitude is constructed here in three space dimensions when the electron velocity relaxation is taken into account. The speed of the electron flow tending to a uniform equilibrium, and the pointwise behavior of solutions to the linearized homogeneous system in the frequency space are investigated in detail.

    AMSC: 76X05, 76N10, 35B40