World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Minimal Free Resolutions of Zero-dimensional Schemes in ℙ1 × ℙ1

    https://doi.org/10.1142/S1005386715000097Cited by:1 (Source: Crossref)

    Let X be a zero-dimensional scheme in ℙ1 × ℙ1. Then X has a minimal free resolution of length 2 if and only if X is ACM. In this paper we determine a class of reduced schemes whose resolutions, similarly to the ACM case, can be obtained by their Hilbert functions and depend only on their distributions of points in a grid of lines. Moreover, a minimal set of generators of the ideal of these schemes is given by curves split into the union of lines.

    AMSC: 13D02, 13D40, 13H10