Photoelectrochemical properties of donor-acceptor nanocomposite films composed of porphyrin-functionalized cup-shaped nanocarbon materials
Abstract
Porphyrin-functionalized cup-shaped nanocarbons (CNC-H2P) have been assembled onto nanostructured SnO2 films using an electrophoretic deposition method to examine the photoelectrochemical properties. The obtained CNC-H2P nanohybrid films were examined by a series of steady-state and time-resolved spectroscopic measurements and photoelectrochemical measurements. The resulting nanohybrid film afforded drastic enhancement in the photoelectrochemical performance as well as broader photoresponse in the visible region as compared with the reference CNC system without porphyrins. The enhancement of photocurrent generation may be caused by the efficient electron injection from the long-lived charge-separated state of CNC-H2P upon photoexcitation. This feature makes cup-shaped nanocarbon materials a useful candidate for developing efficient photoelectrochemical and photovoltaic cells.

Handbook of Porphyrin Science now available in 46 volumes