World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Photoelectrochemical properties of donor-acceptor nanocomposite films composed of porphyrin-functionalized cup-shaped nanocarbon materials

    https://doi.org/10.1142/S1088424610002264Cited by:4 (Source: Crossref)

    Porphyrin-functionalized cup-shaped nanocarbons (CNC-H2P) have been assembled onto nanostructured SnO2 films using an electrophoretic deposition method to examine the photoelectrochemical properties. The obtained CNC-H2P nanohybrid films were examined by a series of steady-state and time-resolved spectroscopic measurements and photoelectrochemical measurements. The resulting nanohybrid film afforded drastic enhancement in the photoelectrochemical performance as well as broader photoresponse in the visible region as compared with the reference CNC system without porphyrins. The enhancement of photocurrent generation may be caused by the efficient electron injection from the long-lived charge-separated state of CNC-H2P upon photoexcitation. This feature makes cup-shaped nanocarbon materials a useful candidate for developing efficient photoelectrochemical and photovoltaic cells.

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes