World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Ferric His93Gly myoglobin cavity mutant and its complexes with thioether and selenolate as heme protein models

    https://doi.org/10.1142/S1088424610002872Cited by:5 (Source: Crossref)

    The composition of ferric exogenous ligand-free His93Gly sperm whale myoglobin (H93G Mb) at neutral pH has been determined by examination of the spectral properties of the protein over the pH range from 3.0 to 10.5. An apparent pKa value of ~6.6 has been observed for the conversion of a postulated six-coordinate bis-water-bound coordination structure at pH 5.0 to a five-coordinate hydroxide-bound form at pH 10.5. Starting from the exogenous ligand-free ferric H93G protein, ferric mono- and bis-thioether (tetrahydrothiophene, THT)-ligated adducts have been prepared and characterized by UV-visible (UV-vis) absorption and magnetic circular dichroism (MCD) spectroscopy. The mon-THT ferric H93G Mb species has hydroxide as the sixth ligand. The bis-THT derivative is a model for the low-spin ferric heme binding site of native bis-Met-ligated bacterioferritin or streptococcal heme-associated protein (Shp). A novel THT-bound ferryl H93G Mb moiety has been partially formed. The high-spin five-coordinate ferric H93G(selenolate) Mb complex has been prepared using benzeneselenol and characterized by UV-vis and MCD spectroscopy as a model for Se-Cys-ligated ferric cytochrome P450. The results described herein further demonstrate the versatility of the H93G cavity mutant for modeling the coordination structures of novel heme iron protein active sites.

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes