World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Photophysics of novel 22π porphyrinoids

    https://doi.org/10.1142/S1088424612500496Cited by:1 (Source: Crossref)

    The photophysical properties of toluene solutions of two new 22π expanded porphycene compounds were measured using a combination of various steady-state and time-resolved techniques. The determined triplet energy (ET= 109 ± 3) kJ.mol-1, coincident with the calculated ET = (96.0 ± 10) kJ.mol-1, of both red absorbing compounds is higher than the energy required to excite ground state molecular oxygen to singlet molecular oxygen. However, the intersystem crossing yield is very low (ca. 10-2), which makes these compounds poor photosensitizers. The triplet state yield of the two expanded 22π porphyrinoid compounds is much lower than that of the parent porphycene, whereas their fluorescence is as high (ca. 30%) as the value for porphycene. The slower than diffusional quenching rate constant of a porphycene triplet state by the two new compounds reflects a steric hindering factor of the exothermic energy transfer.

    Dedicated to Professor Emanuel Vogel in memoriam

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes