World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Improvement of electrocatalytic effect in voltammetric sensors based on phthalocyanines

    https://doi.org/10.1142/S1088424616500218Cited by:12 (Source: Crossref)

    Voltammetric sensors based on phthalocyanines have been used to detect a variety of compounds. In this paper, the state of the art of sensors prepared using classical techniques will be revised. Then, new strategies to improve the performance of the sensors will be described using as example sensors chemically modified with lutetium bisphthalocyanine (LuPc2) dedicated to the detection of phenols of interest in the food industry. Classical LuPc2 carbon paste electrodes can detect phenols such as catechol, caffeic acid or pyrogallol with limits of detection in the range of 104–105 M. The performance can be improved by using nanostructured Langmuir–Blodgett (LB) or Layer by Layer (LbL) films. The enhanced surface to volume ratio produce an increase in the sensitivity of the sensors. Limits of detection of 105–107 M are attained, which are one order of magnitude lower than those obtained using conventional carbon paste electrodes. Moreover, these techniques can be used to co-immobilize two electrocatalytic materials in the same device. The limits of detection obtained in LB sensors combining LuPc2/AuNPs or LuPc2/CNT are further improved. Finally, the LB technique has been used to prepare biosensors where a phenol oxydase (such as tyrosinase or lacasse) is immobilized in a biomimetic environment that preserves the enzymatic activity. Moreover, LuPc2 can be co-immobilized with the enzyme in a lipidic film formed by arachidic acid (AA). LuPc2 can act as an electron mediator facilitating the electron transfer. These biomimetic sensors formed by LuPc2/AA/enzyme show Limits of detection of 108 M and an enhanced selectivity.

    Dedicated to Professor Kevin M. Smith on the occasion of his 70th birthday

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes