World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Chirality and spatially pre-organized multi-porphyrinoids

    https://doi.org/10.1142/S1088424618500396Cited by:3 (Source: Crossref)

    We report herein that chiral and enantiopure compounds such nucleosides and peptides can pre-organize multi-porphyrinic systems and influence their properties. The first example given concerns star-shaped mutli-porphyrins with chiral and enantiopure nucleosidic linkers. If the configuration is indeed a star-shaped nanomolecule, it appears that the induced conformation is nothing as expected. The four peripheral Zn(II) porphyrins collapse over the free-base central one, inducing totally different photo-physical properties. Despite a minor expected light energy harvesting behavior, the principal capability of this system is to quench the collected light energy and convert it from radiative to non-radiative de-activation. The second example concerns polypeptides with pendant porphyrins. The peptidic backbone confers to the systems, after a certain degree of oligomerization, a 310 right handed helical conformation which induces cavities within the multi-porphyrinc architecture, ready to welcome guests and render, for example, the complexation of C60 much easier. We thus have constructed novel organic photovoltaic systems using supramolecular complexes of porphyrin–peptide oligomers with fullerene clusters. The composite cluster OTE/SnO2 electrode prepared with (P(ZnP)16+ C60)m, exhibits an impressive incident photon-to-photocurrent efficiency (IPCE) with values reaching as high as 56%. The power conversion efficiency of the (P(H2P)16+ C60)m modified electrode reaches 1.6%, which is 40 times higher than the value (0.043%) of the porphyrin monomer (P(H2P)1+ C60)m modified electrode. Thus, the organization approach between porphyrins and fullerenes with polypeptide structures is promising, and may make it possible to further improve the light energy conversion properties by using a larger number of porphyrins in a polypeptide unit.

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes