World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Quantum Entanglement and Geometric Phase of Two Moving Two-Level Atoms

    https://doi.org/10.1142/S1230161215500158Cited by:33 (Source: Crossref)

    An important kind of interaction between two moving two-level atoms and a field mode, where the coupling parameter is taken to be time-dependent, is presented in this paper. Nonlocal correlations between the atoms and the field have been investigated by means of concurrence and von Neumann entropy in terms of the involved parameters of the system. The results show that the atomic motion plays an essential role in the evolution of system dynamics, its nonlocal correlations and geometric phase. Moreover, an interesting correlation between the entanglement and the geometric phase during the evolution was observed. The presented system can be very useful for generating and maintaining high amount of entanglement by means of controlling the parameters of atomic motion.