World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A SUPERLINEARLY CONVERGENT ALGORITHM FOR LARGE SCALE MULTI-STAGE STOCHASTIC NONLINEAR PROGRAMMING

    https://doi.org/10.1142/S1465876304002411Cited by:2 (Source: Crossref)

    This paper presents an algorithm for solving a class of large scale nonlinear programming which is originally derived from the multi-stage stochastic convex nonlinear programming. With the Lagrangian-dual method and the Moreau-Yosida regularization, the primal problem is transformed into a smooth convex problem. By introducing a self-concordant barrier function, an approximate generalized Newton method is designed in this paper. The algorithm is shown to be of superlinear convergence. At last, some preliminary numerical results are provided.