World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A COMPARISON OF EVOLUTIONARY AND COEVOLUTIONARY SEARCH

    https://doi.org/10.1142/S1469026802000427Cited by:46 (Source: Crossref)

    Previous work on coevolutionary search has demonstrated both successful and unsuccessful applications. As a step in explaining what factors lead to success or failure, we present a comparative study of an evolutionary and a coevolutionary search model. In the latter model, strategies for solving a problem coevolve with training cases. We find that the coevolutionary model has a relatively large efficacy: 86 out of 100 (86%) of the simulations produce high quality strategies. In contrast, the evolutionary model has a very low efficacy: a high quality strategy is found in only two out of 100 runs (2%). We show that the increased efficacy in the coevolutionary model results from the direct exploitation of low quality strategies by the population of training cases. We also present evidence that the generality of the high-quality strategies can suffer as a result of this same exploitation.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!