World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Computational Intelligence in Signal and Image Processing; Guest Editors: Yen-Wei Chen and Vasile PaladeNo Access

TEXTURE SEGMENTATION USING SEMI-SUPERVISED SUPPORT VECTOR MACHINES

    https://doi.org/10.1142/S1469026804001197Cited by:2 (Source: Crossref)

    Segmentation of natural textures has been investigated by developing a novel semi-supervised support vector machines (S3VM) algorithm with multiple constraints. Unlike conventional segmentation algorithms the proposed method does not classify the textures but classifies the uniform-texture regions and the regions of boundaries. Also the overall algorithm does not use any training set as used by all other learning algorithms such as conventional SVMs. During the process, the images are restored from high spatial frequency noise. Then various-order statistics of the textures within a sliding two-dimensional window are measured. K-mean algorithm is used to initialise the clustering procedure by labelling part of the class members and the classifier parameters. Therefore at this stage we have both the training and the working sets. A non-linear S3VM is then developed to exploit both sets to classify all the regions. The convex algorithm maximises a defined cost function by incorporating a number of constraints. The algorithm has been applied to combinations of a number of natural textures. It is demonstrated that the algorithm is robust, with negligible misclassification error. However, for complex textures there may be a minor misplacement of the edges.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!