EVOLUTIONARY COMPUTATION FOR ON-LINE AND OFF-LINE PARAMETER TUNING OF EVOLVING FUZZY NEURAL NETWORKS
Abstract
This work applies Evolutionary Computation to achieve completely self-adapting Evolving Fuzzy Neural Networks (EFuNNs) for operating in both incremental (on-line) and batch (off-line) modes. EFuNNs belong to a class of Evolving Connectionist Systems (ECOS), capable of performing clustering-based, on-line, local area learning and rule extraction. Through Evolutionary Computation, its parameters such as learning rates and membership functions are continuously adjusted to reflect the changes in the dynamics of incoming data. The proposed methods are tested on the Mackey–Glass series and the results demonstrate a substantial improvement in EFuNN's performance.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in artificial intelligence! |