World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROTEIN SECONDARY STRUCTURE PREDICTION USING SUPPORT VECTOR MACHINES AND A NEW FEATURE REPRESENTATION

    https://doi.org/10.1142/S1469026806002076Cited by:9 (Source: Crossref)

    Knowledge of the secondary structure and solvent accessibility of a protein plays a vital role in the prediction of fold, and eventually the tertiary structure of the protein. A challenging issue of predicting protein secondary structure from sequence alone is addressed. Support vector machines (SVM) are employed for the classification and the SVM outputs are converted to posterior probabilities for multi-class classification. The effect of using Chou–Fasman parameters and physico-chemical parameters along with evolutionary information in the form of position specific scoring matrix (PSSM) is analyzed. These proposed methods are tested on the RS126 and CB513 datasets. A new dataset is curated (PSS504) using recent release of CATH. On the CB513 dataset, sevenfold cross-validation accuracy of 77.9% was obtained using the proposed encoding method. A new method of calculating the reliability index based on the number of votes and the Support Vector Machine decision value is also proposed. A blind test on the EVA dataset gives an average Q3 accuracy of 74.5% and ranks in top five protein structure prediction methods. Supplementary material including datasets are available on .

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!