World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Biosignal Sensing and Intelligent Information ProcessingNo Access

SVM MODELS FOR DIAGNOSING BALANCE PROBLEMS USING STATISTICAL FEATURES OF THE MTC SIGNAL

    https://doi.org/10.1142/S1469026808002314Cited by:9 (Source: Crossref)

    Trip-related falls are a major problem in the elderly population and research in the area has received much attention recently. The focus has been on devising ways of identifying individuals at risk of sustaining such falls. The main aim of this work is to explore the effectiveness of models based on Support Vector Machines (SVMs) for the automated recognition of gait patterns that exhibit falling behavior. Minimum toe clearance (MTC) during continuous walking on a treadmill was recorded on 10 healthy elderly and 10 elderly with balance problems and with a history of tripping falls. Statistical features obtained from MTC histograms were used as inputs to the SVM model to classify between the healthy and balance-impaired subjects. The leave-one-out technique was utilized for training the SVM model in order to find the optimal model parameters. Tests were conducted with various kernels (linear, Gaussian and polynomial) and with a change in the regularization parameter, C, in an effort to identify the optimum model for this gait data. The receiver operating characteristic (ROC) plots of sensitivity and specificity were further used to evaluate the diagnostic performance of the model. The maximum accuracy was found to be 90% using a Gaussian kernel with σ2 = 10 and the maximum ROC area 0.98 (80% sensitivity and 100% specificity), when all statistical features were used by the SVM models to diagnose gait patterns of healthy and balance-impaired individuals. This accuracy was further improved by using a feature selection method in order to reduce the effect of redundant features. It was found that two features (standard deviation and maximum value) were adequate to give an improved accuracy of 95% (90% sensitivity and 100% specificity) using a polynomial kernel of degree 2. These preliminary results are encouraging and could be useful not only for diagnostic applications but also for evaluating improvements in gait function in the clinical/rehabilitation contexts.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!