World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A VECTOR MATRIX REAL TIME RECURSIVE BACKPROPAGATION ALGORITHM FOR RECURRENT NEURAL NETWORKS THAT APPROXIMATE MULTI-VALUED PERIODIC FUNCTIONS

    https://doi.org/10.1142/S1469026809002667Cited by:5 (Source: Crossref)

    Unlike feedforward neural networks (FFNN) which can act as universal function approximators, recursive, or recurrent, neural networks can act as universal approximators for multi-valued functions. In this paper, a real time recursive backpropagation (RTRBP) algorithm in a vector matrix form is developed for a two-layer globally recursive neural network that has multiple delays in its feedback path. This algorithm has been evaluated on two GRNNs that approximate both an analytic and nonanalytic periodic multi-valued function that a feedforward neural network is not capable of approximating.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!