World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HYBRID APPROACH FOR BRAIN TUMOR SEGMENTATION IN MAGNETIC RESONANCE IMAGES USING CELLULAR NEURAL NETWORKS AND OPTIMIZATION TECHNIQUES

    https://doi.org/10.1142/S1469026810002781Cited by:2 (Source: Crossref)

    Tumor segmentation from brain magnetic resonance image data is an important but time consuming task performed manually by medical experts. Automating this process is challenging due to the high diversity in appearance of tumor tissue among different patients and in many cases, similarity between tumor and normal tissue. This paper deals with an efficient segmentation algorithm for extracting brain tumors in magnetic resonance images using Cellular Neural Networks (CNN). Learning CNN templates values are formulated as an optimization problem. The template coefficients (weights) of an CNN which will give a desired performance, can be derived by learning genetic algorithm and simulated annealing optimization techniques. The objective of this work is to compare the performance of genetic algorithm (GA) and simulated annealing (SA) for finding the optimum template values in the CNN which is used for segmenting the tumor region in the abnormal MR images. The method is applied on real data of MRI images of thirty patients with four different types of tumors. The results are compared with radiologist labeled ground truth. Quantitative analysis between ground truth and segmented tumor is presented in terms of segmentation efficiency. From the analysis and performance measures like segmentation accuracy, it is inferred that the brain tumor segmentation is best done using CNN with genetic algorithm template optimization than CNN with simulated annealing template optimization. An average accuracy rate of above 95% was obtained using this segmentation algorithm.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!