World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CLASSIFICATION OF ARRHYTHMIA IN ELECTROCARDIOGRAM USING EMD BASED FEATURES AND SUPPORT VECTOR MACHINE WITH MARGIN SAMPLING

    https://doi.org/10.1142/S1469026813500156Cited by:3 (Source: Crossref)

    Electrocardiogram (ECG) signals represent a useful information source about the rhythm and the functioning of the heart. Any disturbance in the heart's normal rhythmic contraction is called an arrhythmia. Analysis of Electrocardiogram signals is the most effective available method for diagnosing cardiac arrhythmias. Computer based classification of ECG provides higher accuracy and offer a potential of an affordable cardiac abnormality mass screening. The empirical mode decomposition is performed on various arrhythmia signals and different levels of intrinsic mode functions (IMF) are obtained. Singular value decomposition (SVD) is used to extract features from the IMF and classification is performed using support vector machine. This method is more efficient for classification of ECG signals and at the same time provides good generalization properties.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!