World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BINARY PSO AND ROUGH SET THEORY FOR FEATURE SELECTION: A MULTI-OBJECTIVE FILTER BASED APPROACH

    https://doi.org/10.1142/S1469026814500096Cited by:46 (Source: Crossref)

    Feature selection is a multi-objective problem, where the two main objectives are to maximize the classification accuracy and minimize the number of features. However, most of the existing algorithms belong to single objective, wrapper approaches. In this work, we investigate the use of binary particle swarm optimization (BPSO) and probabilistic rough set (PRS) for multi-objective feature selection. We use PRS to propose a new measure for the number of features based on which a new filter based single objective algorithm (PSOPRSE) is developed. Then a new filter-based multi-objective algorithm (MORSE) is proposed, which aims to maximize a measure for the classification performance and minimize the new measure for the number of features. MORSE is examined and compared with PSOPRSE, two existing PSO-based single objective algorithms, two traditional methods, and the only existing BPSO and PRS-based multi-objective algorithm (MORSN). Experiments have been conducted on six commonly used discrete datasets with a relative small number of features and six continuous datasets with a large number of features. The classification performance of the selected feature subsets are evaluated by three classification algorithms (decision trees, Naïve Bayes, and k-nearest neighbors). The results show that the proposed algorithms can automatically select a smaller number of features and achieve similar or better classification performance than using all features. PSOPRSE achieves better performance than the other two PSO-based single objective algorithms and the two traditional methods. MORSN and MORSE outperform all these five single objective algorithms in terms of both the classification performance and the number of features. MORSE achieves better classification performance than MORSN. These filter algorithms are general to the three different classification algorithms.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!