World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Novel Approach for Optimization in Dynamic Environments Based on Modified Artificial Fish Swarm Algorithm

    https://doi.org/10.1142/S1469026816500103Cited by:24 (Source: Crossref)

    Swarm intelligence algorithms are amongst the most efficient approaches toward solving optimization problems. Up to now, most of swarm intelligence approaches have been proposed for optimization in static environments. However, numerous real-world problems are dynamic which could not be solved using static approaches. In this paper, a novel approach based on artificial fish swarm algorithm (AFSA) has been proposed for optimization in dynamic environments in which changes in the problem space occur in discrete intervals. The proposed algorithm can quickly find the peaks in the problem space and track them after an environment change. In this algorithm, artificial fish swarms are responsible for finding and tracking peaks and several behaviors and mechanisms are employed to cope with the dynamic environment. Extensive experiments show that the proposed algorithm significantly outperforms previous algorithms in most of tested dynamic environments modeled by moving peaks benchmark.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!