Convolutional Neural Networks for Water Body Extraction from Landsat Imagery
Abstract
Traditional machine learning methods for water body extraction need complex spectral analysis and feature selection which rely on wealth of prior knowledge. They are time-consuming and hard to satisfy our request for accuracy, automation level and a wide range of application. We present a novel deep learning framework for water body extraction from Landsat imagery considering both its spectral and spatial information. The framework is a hybrid of convolutional neural networks (CNN) and logistic regression (LR) classifier. CNN, one of the deep learning methods, has acquired great achievements on various visual-related tasks. CNN can hierarchically extract deep features from raw images directly, and distill the spectral–spatial regularities of input data, thus improving the classification performance. Experimental results based on three Landsat imagery datasets show that our proposed model achieves better performance than support vector machine (SVM) and artificial neural network (ANN).
Remember to check out the Most Cited Articles! |
---|
Check out these titles in artificial intelligence! |