Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Neural Skyline Filtering for Imbalance Features Classification

    https://doi.org/10.1142/S1469026817500195Cited by:8 (Source: Crossref)

    In the current digitalized era, large datasets play a vital role in features extractions, information processing, knowledge mining and management. Sometimes, existing mining approaches are not sufficient to handle large volume of datasets. Biological data processing also suffers for the same issue. In the present work, a classification process is carried out on large volume of exons and introns from a set of raw data. The proposed work is designed into two parts as pre-processing and mapping-based classification. For pre-processing, three filtering techniques have been used. However, these traditional filtering techniques face difficulties for large datasets due to the long required time during large data processing as well as the large required memory size. In this regard, a mapping-based neural skyline filtering approach is designed. Randomized algorithm performed the mapping for large volume of datasets based on objective function. The objective function determines the randomized size of the datasets according to the homogeneity. Around 200 million DNA base pairs have been used for experimental analysis. Experimental result shows that mapping centric filtering outperforms other filtering techniques during large data processing.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!