A New High-Order Approach for Forecasting Fuzzy Time Series Data
Abstract
In forecasting the fuzzy time series data, several authors took grades of membership 1, 0.5 and 0 for linguistic interval corresponding to fuzzy set. In this paper, we have proposed high-order approach for forecasting the fuzzy time series data by using the grade of membership value defined for each datum corresponding to triangular fuzzy sets and fuzzify the historical data by triangular fuzzy sets which have their maximum membership values. Also, we establish high-order fuzzy logical relationship groups and give a new technique for defuzzification process, by which we can compute the forecasted value in a more efficient way with lower value of MSE. For verifying the suitability of proposed method, we illustrate time series data of student enrollments at the University of Alabama, USA, and crop (Lahi) production of Pantnagar farm, G. B. Pant University of Agriculture and Technology, Pantnagar, India. The forecasting accuracy rate of proposed high-order forecasting method is better than those of existing methods and the forecasted production is much closer to the actual production.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in artificial intelligence! |