World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Variational Autoencoder-Based Dimensionality Reduction for High-Dimensional Small-Sample Data Classification

    https://doi.org/10.1142/S1469026820500029Cited by:33 (Source: Crossref)

    Classification problems in which the number of features (dimensions) is unduly higher than the number of samples (observations) is an essential research and application area in a variety of domains, especially in computational biology. It is also known as a high-dimensional small-sample-size (HDSSS) problem. Various dimensionality reduction methods have been developed, but they are not potent with the small-sample-sized high-dimensional datasets and suffer from overfitting and high-variance gradients. To overcome the pitfalls of sample size and dimensionality, this study employed variational autoencoder (VAE), which is a dynamic framework for unsupervised learning in recent years. The objective of this study is to investigate a reliable classification model for high-dimensional and small-sample-sized datasets with minimal error. Moreover, it evaluated the strength of different architectures of VAE on the HDSSS datasets. In the experiment, six genomic microarray datasets from Kent Ridge Biomedical Dataset Repository were selected, and several choices of dimensions (features) were applied for data preprocessing. Also, to evaluate the classification accuracy and to find a stable and suitable classifier, nine state-of-the-art classifiers that have been successful for classification tasks in high-dimensional data settings were selected. The experimental results demonstrate that the VAE can provide superior performance compared to traditional methods such as PCA, fastICA, FA, NMF, and LDA in terms of accuracy and AUROC.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!