World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S1469026820500091Cited by:0 (Source: Crossref)

In this paper, a Sugeno type fuzzy system based on the fuzzy clustering has been developed for a variety of datasets. The number of rules for each dataset is based on the optimum number of clusters in that dataset. Rule sets provide the knowledge base for the classification of data. Each rule set is fine-tuned using the GWO with the intention to improve the classification. The approach is compared with the work of previous researchers on similar data sets using a variety of techniques, including nature-inspired algorithms such as genetic algorithms and Swarm based algorithms. Statistical Analysis of the performance of GWO shows that it is better than five other algorithms 95% of the time.

Remember to check out the Most Cited Articles!

Check out these titles in artificial intelligence!