World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Self-Adaptive Weighted Fuzzy c-Means for Mixed-Type Data

    https://doi.org/10.1142/S1469026820500303Cited by:1 (Source: Crossref)

    The influence of features on each cluster is not the same in a mixed-type dataset. Based on the rough set and shadow set theories, the fuzzy distribution centroid was defined to represent the clustering center of the discrete feature so that the fuzzy c-means algorithm (FCM) could be extended to cluster the data with both continuous and discrete features. Then, considering the different contributions of the features to each cluster, a new weighted objective function was constructed in accordance with the principles of fuzzy compactness and separation. Because the learning feature weight is the key step in feature-weighted FCM, this paper regarded the feature weight as a variable optimized in the clustering process and put forward a self-adaptive mixed-type weighted FCM. The experimental results showed that the algorithm could be effectively applied to a heterogeneous mixed-type dataset.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!