Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S1469026822500067Cited by:2 (Source: Crossref)

Sputum smear microscopic examination is an effective, fast, and low-cost technique that is highly specific in areas with a high prevalence of pulmonary tuberculosis. Since manual screening needs trained pathologist in high prevalence zones, the possibility of deploying adequate technicians during the epidemic sessions would be impractical. This condition can cause overburdening and fatigue of working technicians which may tend to reduce the potential efficiency of Tuberculosis (TB) diagnosis. Hence, automation of sputum inspection is the most appropriate aspect in TB outbreak zones to maximize the detection ability. Sputum collection, smear preparing, staining, interpreting smears, and reporting of TB severity are all part of the diagnosis of tuberculosis. This study has analyzed the risk of automating TB severity grading. According to the findings of the analysis, numerous TB-positive cases do not fit into the standard TB severity grade while applying direct rule-driven strategy. The manual investigation, on the other hand, arbitrarily labels the TB grade on those cases. To counter the risk of automation, a fuzzy-based Tuberculosis Severity Level Categorizing Algorithm (TSLCA) is introduced to eliminate uncertainty in classifying the level of TB infection. TSLCA introduces the weight factors, which are dependent on the existence of maximum number of Acid-Fast Bacilli (AFB) per microscopic Field of View (FOV). The fuzzification and defuzzification operations are carried out using the triangular membership function. In addition, the α-cut approach is used to eliminate the ambiguity in TB severity grading. Several uncertain TB microscopy screening reports are tested using the proposed TSLCA. Based on the experimental results, it is observed that the TB grading by TSLCA is consistent, error-free, significant and fits exactly into the standard criterion. As a result of the proposed TSLCA, the uncertainty of grading is eliminated and the reliability of tuberculosis diagnosis is ensured when adapting automatic diagnosis.

Remember to check out the Most Cited Articles!

Check out these titles in artificial intelligence!