World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S1469026822500286Cited by:2 (Source: Crossref)

Recently, graph convolutional networks (GCNs) for text classification have received considerable attention in natural language processing. However, most current methods just use original documents and words in the corpus to construct the topology of graph which may lose some effective information. In this paper, we propose a Multi-Stream Graph Convolutional Network (MS-GCN) for text classification via Representative-Word Document (RWD) mining, which is implemented in PyTorch. In the proposed method, we first introduce temporary labels and mine the RWDs which are treated as additional documents in the corpus. Then, we build a heterogeneous graph based on relations among a Group of RWDs (GRWDs), words and original documents. Furthermore, we construct the MS-GCN based on multiple heterogeneous graphs according to different GRWDs. Finally, we optimize our MS-GCN model through updated mechanism of GRWDs. We evaluate the proposed approach on six text classification datasets, 20NG, R8, R52, Ohsumed, MR and Pheme. Extensive experiments on these datasets show that our proposed approach outperforms state-of-the-art methods for text classification.

Remember to check out the Most Cited Articles!

Check out these titles in artificial intelligence!