NEURAL STEM CELLS AND ARMED DERIVATIVES: FATE AND THERAPEUTIC POTENTIAL IN THE BRAIN
Abstract
The ability of neural stem cells (NSCs) to home to diseased areas of the brain and their capacity to differentiate into all neural phenotypes provides a powerful tool for the treatment of both diffuse and localized neurologic/oncogenic disorders. NSCs are the most immature neural precursor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division. A full understanding of the molecular mechanisms regulating their migratory properties and their choice between various differentiation programs is essential if these cells are to be used for therapeutic applications. This review focuses on summarizing the factors and signaling molecules that are involved in migration and differentiation of neural stem cells and also gives an insight into therapeutic potential of these cells with an emphasis on glioma therapy.
Review article.