World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CORRELATION BETWEEN MICROSTRUCTURE AND YIELD STRESS IN MAGNETICALLY STABILIZED FLUIDIZED BEDS

    https://doi.org/10.1142/S1756973710000400Cited by:0 (Source: Crossref)

    A magnetofluidized bed consists of a bed of magnetizable particles subjected to a gas flow in the presence of an externally applied magnetic field. In the absence of magnetic field, there is a given gas velocity at which naturally cohesive fine particles can form a network of permanent interparticle contacts capable of sustaining small stresses. This gas velocity marks the jamming transition of the fluidized bed. For gas velocities above the jamming transition, the bed resembles a liquid. Below the jamming transition, the bed behaves as a weak solid and it has a nonvanishing tensile strength. In the absence of magnetic field, the tensile strength of the solidlike stabilized bed has its only origin in nonmagnetic attractive forces acting between particles. In the presence of a magnetic field, the gas velocity at the jamming transition and the tensile strength of the bed depend on the field strength as a consequence of the magnetostatic attraction induced between the magnetized particles. In this work we present experimental measurements on the jamming transition and tensile strength of magnetofluidized beds of linearly magnetizable fine powders. It is shown that powders with similar magnetic susceptibility but different strength of the nonmagnetic forces show a different response to the magnetic field. This finding can be explained by the influence of the nonmagnetic natural forces on the network of contacts. Thus, our experimental results reported in this paper reinforce the role of short-ranged interparticle contact forces on the behavior of the system, which contrasts with the usual modeling approach in which the magnetofluidized bed is viewed as a continuum medium and a fundamental assumption is that the fields can be averaged over large distances as compared with particle size.